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I.  INTRODUCTION 

A simple product form can often be written to express the relation- 
ship between the intensity of an emission line in an electronic transi- 
tion of a diatomic molecule, and the population of the emitting level: 

[^'; = [64A4/3c2][SJ,J1I/(2J' + l)]Re
2 qv,v,lNvIJ,  .        (1) 

This represents the total energy (erg) emitted each second (into all 4v 
sterad) from 1 cm3 of gas containing Ny'j' excited state molecules in 
the level in question,  v is the frequency (Hz) of the transition, which 
occurs between the upper (single prime) and lower (double prime) vibra- 
tional (v) and rotational (J) states. The electronic transition moment 
Re is here assumed constant for all transitions, an assumption valid^ 
for the B-X system of S2 studied in this work.  The contributions due 
to the nuclear motion, viz., the rotational line strength Sj'j" and the 
vibrational overlap factor (Franck-Condon factor) qv'v", are likewise 
considered in Eq. (1) to be fully separable.  (Small, calculable cor- 
rections to the v-dependence of Sjij" and the J-dependence of qv'v" have 
been discussed.)! 

There is a variety of experiments in which intensity data are used, 
together with Eq. (1), to extract populations of individual levels in 
both ground and excited states.  Such applications require reliable 
values of SJIJ" and qv'v" for the electronic system under study.  For 
the B3EU - X^Eg system of S2, there have been several such investiga- 
tions recently. These include data on energy transfer within the B-state 
following selective excitation,2 and the analysis of chemiluminescence 
produced in afterglows3,4 or following the alkaline earth rearrangement 

2 ? _ 
K.  A.   Meyer_,   "Some Radiative Properties of the B^lu    State of Diatomic 
Sulfur",  Ph,  D.   Thesis,  University of Wisconsin,   1976;  K.  A.   Meyer 
and D.   R.   Crosley,   "Intensity Studies on S2 Selectively Excited by 
Eg Line Radiation",  to he -published. 

2 
T.  A.   Caughey,   "Collisional Energy Transfer in B State Diatomic Sulfur", 
Ph.  D.   Thesis,  University of Wisconsin,   1977;  T.   A.   Caughey and D.  R. 
Crosley,   "Relaxation Within the B3T.U~ State of S2", J.   Chem.  Phys., 
69,   3279  (1978). 

3 
D.   Kley and H.   P.   Broida,  "Chemiluminescence and Photoluminesoenoe of 
S2,  SO and SO2 in SF6 Afterglows",  J.   Photochem.,  6, 241-252  (1976/77). 

4 
G.  Lakshminarayana and C.  G.  Mahajan,   "Spectroscopic Studies of the 
Sulfur Afterglow",  J.   Quant.  Spectrosc.  Radiat.  Transfer,  16_,   549-552 
(1976). 



reaction M + S2CJl2'^ Another application lies in the choice of broad- 
band filtering for flame photometric analysis of sulfur in the presence 
of interferences.^ 

As a probe of ground state populations, laser induced fluorescence 
such as reported here is a most attractive diagnostic tool; at least one 
other current study? has used this technique as a combustion diagnostic 
for S2.  In addition, photoluminescence from a filtered continuum3 can 
also provide ground state data.  Finally, these data can be used for 
further development of the recent optically pumped S2 laser,8 which has 
a broad range of near continuous tunability through the ultra-violet and 
visible; the widespread occurrence of B-X emission in discharges and 
chemical reactions offers the possibility of an S2 chemical laser. 

In nearly all cases of diatomic electronic transitions, including 
the B-X system of S2, sufficiently accurate values of Sj'j" may be 
obtained by calculation, using measured spectroscopic constants.  The 
Franck-Condon factors can also be theoretically computed to the required 
accuracy in many cases, using model potentials, most often of RKR form. 
In the case of the B-X transition, however, such calculations of qv'v" 
are not reliable, as is illustratedS by the disagreement between experi- 
mental and calculated values of ({Z,vu  and cl4,v" for v" = 0 through 10. 
While the calculated Franck-Condon factors exhibit the same qualitative 
trends as those seen in the measured values, the quantitative disagreement 
precludes the use of the theoretical quantities for analysis purposes, 
so that experimental values are necessary. 

F.   Engelke and R.   N.   Zarea   "Crossed-Beam Chemilwninesaenae:    The 
Alkaline Earth Rearrangement Reaction M + S2Ci2 + Sg* + MCl2"3  Chem. 
Phys.,   19j   227-340  (1977). 

6S.  S.  Brody and J.  E.   Chaney*   "The Application of a Speoifia Detector 
for Phosphorous and for Sulfur Compounds - Sensitive to Nanogram 
Quantities",  J.   Gas Chromatog.y  £, 42-46 (1966); P.   J.  Maroulis and 
A.  R.   Bandy,   "Estimate of the Contribution of Biologically Produced 
Dimethyl Sulfur to the Global Sulfur Cycle",  Science,  196,  647  (1977). 

C.   H.  Moeller,  II,  K.   Schofield,  M.   Steinberg,  and H.   P.   Broida, 
"Sulfur Chemistry in Flames", Seventeenth Symposium  (International) 
on Combustion, Leeds, England, August 1978. 

8S.   R.   Leone and K.   G.   Kosnik,   "A Tunable Visible Ultraviolet Laser 
on S2  (B3lu~ - X3zg~)",  Appl.  Phys.  Lett.,  30,   346-348  (1977). 

9K.  A.  Meyer and D.  R.   Crosley,   "Franck-Condon Factors From Selectively 
Excited Resonance Fluorescence in the B-X System of S2", J-   Chem.  Phys., 
59_,. 3153-3161   (1973). 
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Although the B-X system in discharge emission is too heavily con- 
gested to permit reliable intensity measurements over but a small range 
of bands, it is an ideal candidate for study using the technique of 
selective excitation of resonance fluorescence.  The method is schemati- 
cally illustrated in Figure 1.  A laser is tuned to some specific 
absorption line of the (9,1) band, exciting the S2 to a particular trip- 
let component of a particular rotational level in v' = 9 (the rotational 
and triplet structure is not explicitly shown in Figure 1).  From here 
the S2 radiates to all of the v" levels for which the qv'v" are non- 
negligible; several of these are indicated in the figure.  The experi- 
ment consists of the measurement of the relative intensities of these 
transitions] because all the fluorescent terms are monitored, absolute 
values of qv'v" may be extracted from the data. 

Earlier work by Meyer1'9 utilized atomic line selective excitation 
of individual v'J' levels of the B3zu state, furnishing the Franck-Condon 
factors for v' = 0, 1, 3, 4, and 5.  In the current study, a frequency 
doubled, tunable dye laser has served as the excitation source, enabling 
measurements to be made on v' =2 and 6 through 9.  The combination of 
these results forms the full set of qv'v" for all the bound-bound 
vibrational bands of the B-X system of the 32-32 isotope. 

II.  EXPERIMENTAL DETAILS 

The apparatus used in the experiment is illustrated schematically 
in Figure 2.  The sulfur is maintained in an evacuable all-quartz cell; 
the pressure is held at ^100 mtorr by a sidearm reservoir at M10oC, and 
the body cell is kept at ^600oC to ensure a high concentration (>_ 98%) 
of the S2 species. The exciting photons are provided by a flashlamp 
pumped dye laser which is frequency doubled (Chromatix CMX4), and into 
which an intracavity etalon may be inserted. 

Several parameters are monitored during an experiment in order to 
prevent errors caused by drift in either the laser intensity or frequency, 
The essential results of the experiment are provided by a scanning 0.35m 
monochromator (#1), outfitted with an EMI 9558Q photomultiplier (PMT) and 
usually operated with 7S\i   slits.  After preamplification, and subsequent 
attenuation if necessary, the PMT output is fed to channel A of a dual- 
input boxcar integrator.  A second monochromator, #11, having an EMI 6255 
PMT detector, is operated with wide slits (2 mm) and at a fixed wave- 
length.  This wavelength corresponds to that of one of the more intense 
terms of the fluorescent series emitted by the particular v' excited by 
the laser.  After preamplification, this forms the input to channel B. 
In addition, a small portion of the ultraviolet light is split off prior 
to entering the sulfur cell, and detected by a third PMT whose average 
current is measured. The input to channels A or B, and the corresponding 
boxcar gages, are observed on an oscilloscope.  Recorder traces are made 
of the boxcar output of channel A * channel B v. the wavelength of mono- 
chromator I, and the integral of this quantity over wavelength for each 

11 
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Figure 1.  Schematic illustration of the experiment.  The laser is tuned 
to a specific rotational line (rotational levels are not shown 
on the diagram) of the (9,1) band, exciting v' = 9.  Emission 
is observed to many v" levels, a few of which are indicated. 
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band which forms the raw experimental data).  Also, we monitor, and 
sometimes record, the output of channel B, providing a measure of the 
laser amplitude and frequency drift, and the ultraviolet-detecting PMT, 
which yields a measure of the laser power.  In addition, the small amount 
of visible light emitted by the laser passes through a small etalon; the 
resulting fringe pattern on a screen is checked visually to ensure that 
the proper line narrowing by the intracavity etalon is maintained. 

A 20 cm long fiber optic rod collects light from the flashlamp and 
delivers it to an enclosed photodiode mounted above a fast amplifier. 
The photodiode output forms the trigger pulse for the boxcar and scope. 
An earlier mode of triggering using a synchronization pulse keyed to the 
laser spark gap circuitry proved unreliable due to jitter in the flash- 
lamp firing time, whereas the photodiode trigger was quite stable. 

The bandwidth of the laser, in the etalon-narrowed configuration 
used for the runs, is ^0.3 cm-! in the ultraviolet.  Individual rotational 
absorption lines were often congested even on this scale, and some effort 
was necessary in order to find a line in each absorption band which was 
free of overlap.  The laser was first scanned in the unnarrowed mode 
(MO cm-1 bandwidth) and the fluorescence monitored, as a function of 
laser wavelength, by monochromator, II.  This produces an excitation 
spectrum such as that shown in Figure 3 for a scan of the (6,0) band. 
Narrowing the laser line and scanning a smaller region produces the more 
highly resolved excitation spectrum also shown in Figure 3, though this 
is still not fully free from overlapped excitation lines.  After choosing 
a suitable candidate for excitation, the rotationally resolved fluores- 
cence spectrum for a given term or terms is scanned with monochromator 
I.  This produces a characteristic two or three-line pattern whose spec- 
tral purity is further ascertained by slight detuning of the laser, and 
rescanning to check for overlap. 

In Figure 4 is shown an exemplary recorder tracing of the fluores- 
cence progression obtained by scanning monochromator I while exciting 
the N' = 36, J' = 37 level of v' = 6.  Each term consists of the apparent 
three-line pattern shown expanded for v" = 1.  The seven-lobe undulatory 
pattern in the scan admits of a simple interpretation discussed more 
fully below. 

The response of the monochromator-PMT combination as a function of 
wavelength was measured using a GE DXW tungsten halide lamp with an NBS- 
traceable calibration curve. 

It is necessary to ascertain that reabsorption of the emission by 
ground state S2, between the emitting region and the cell exit window, 
does not affect the measured results for the low v" terms.  Intensities 
were measured for at least three reservoir temperatures encompassing 
that used for the actual runs, and an extrapolation was made to zero 
pressure. See Appendix I for further details. 

14 
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Figure 3.  Excitation scans of the (6,0) band. The laser wavelength is 
scanned while the output from monochromator II is measured. 
(Top) Laser bandwidth 12 cm-1 (Bottom).  A small region of 
the scan shown on top, with the laser bandwidth here 0.3 cm- 
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Figure 4, Scans of the fluorescence obtained exciting the v1 = 6, 
N' = 36, J' = 37 level of B3EU'.  (a) Scan of the rotational 
structure in the (6,1) term.  The Ri - Pi splitting is 3.85A. 
A PR;L3 branch is also present but overlapped by the Pi line, 
(b) Scan of the entire fluorescence progression emitted by 
v' = 6.  The asterisk marks the exciting band, (6,0).  Terms 
are visible here out to v" = 26.  Each term consists of the 
same rotational structure shown in (a). 
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III.  DATA ANALYSIS AND RESULTS 

The measured intensity for a particular v" term, Fy'v" is obtained 
from the recorder trace representing the integral, over the full wave- 
length range of that term, of the A B boxcar input.  While this normali- 
zation provides adequate correction for small drifts in laser power, the 
doubling crystals must occasionally be peaked up during the scan of a 
single progression. When such drift is present, a term of low v" having 
high measured intensity is rescanned to provide correct ratios. 

For the fluorescent term corresponding to the excitation band, there 
is some laser scatter present at the wavelength of the exciting rotational 
branch. The intensity for this particular term is then obtained from the 
ratio of the peak heights of the non-overlapped rotational branch in that 
term, and the corresponding rotational branch of a neighboring intense 
term.* 

These measured intensities are corrected for the detector response 
R(v3 and divided by the v4 factor.** This yields a series of measured 
quantities strictly proportional to Zj" Re2" Sj'j" qv'v". We assume that 
the electronic transition moment is independent of internuclear distance, 
so that Re2 is the same for all (v', J', v", J")•  This constancy is 
borne out by the lack of any discernible overall smooth trends in the 
qv'v" measured here or previously;!,9 a more complete discussion of this 
point may be found elsewhere,! Since we integrate over all the rota- 
tional branches of the fluorescent emission, and since Zj" Sj'j" = 2J' + 
1, no corrections for the vibrational dependencelO of Sj'j" need be made. 
Thus, the FvV/^RCW form a set of values, each proportional to the 
Franck-Condon factor qv'v" for that term. 

Now the sum, over all v", of the qv'v" for a particular v', is 
unity: 

v" 

This also alleviates oonoevns about aontvihutions due to stimulated 
emission, which is present in the rotational branch overlapped by the 
laser,  at the spectral power densities used. 

The PMT actually measure photons sec 3 not erg sec , but the cali- 
bration using the standard lamp is done so as to obtain an effective 
response in the  latter units. 

10 Such a correlation should be applied to the intensities of the rotat%on- 
ally resolved branches used to determine the intensity of the excitat- 
tion term;  however,   this is a negligible amount.     See K.  A.  Meyer and 
D.  R.   Crosley,   "Rotational Satellite Intensities and Triplet Splitting 
in the BSzu~ State of S2",  Can.  J.   Rhys.,   51,   2119-2124  (197S). 
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The rationale for this relationship is perhaps most readily evident by an 
expansion of the upper state vibrational wavefunction ijjy' in terms of the 
complete set of ground state vibration wavefunctions ^v": 

Tv V       v  V     V 

But 

IVv"l     -   K-WV^drl     =  qvV1 (3) 

(where r is the internuclear distance), and the orthonormality of the 
avivti directly yields Eq. (2).  It is necessary in this context to note 
that the continuum vibrational wavefunctions of the X-state lie above 
the bound vibrational wavefunctions of the B-state, so that the sum is 
effectively over the bound wavefunctions only. 

Consequently, by Eq. (2), the normalization of our measured inten- 
sities to unit sum directly yields the absolute Franck-Condon factor for 
each term. This is possible since the cleanliness of the emission 
afforded by the selective excitation process permits us to measure all 
of the terms in the fluorescence progression.  The values obtained are 
collected in Tables 1 through 5. 

The uncertainty in the individual measured intensity of each term, 
6FV'V"J has been estimated from the chart recorder output.  The resulting 
error bars in the qv'v" are of two kinds, both of which are listed in 
Tables 1 through 5. The first, designated 6qv'vMi i-s directly propor- 
tional to the measured uncertainty Sqy'v" = qv'v" i5Fv'v"/Fv

,v"- 
This is the pertinent uncertainty to be used when comparing the ratio of 
any of the measured Franck-Condon factors, e.g., in a determination of 
the temperature or a measurement of product distributions in chemilumi- 
nescence. 

The uncertainties eqv'v" also lead to a total uncertainty in the 
sum used for the normalization.  Consequently, the uncertainty in the 
absolute value of each qv'v" contains a contribution from this source 
as well as from the 6qv,v"' These uncertainties in the absolute Franck- 
Condon factors, termed Aqv'v"j are those necessary for such purposes as 
absolute absorption strength calculations, and laser design consider- 
ations.  The Aqv'v" are calculated as the square root of the sum of the 
squares of 5qv'v" and the normalization uncertainty. 

It should be stressed that our values of q , ,, are of course only 
as accurate as the calibration of the spectrometer and PMT using the 
standard lamp. Since we require only the relative output of the lamp as 
a function of wavelength, an uncertainty of the order of only 1-2% 

18 
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TABLE I. 
EXCITED LEVEL IS F3 (46) 

v^ 103q 1036q I05Aq 

0 1.3 0.2 0.2 
1 ■  11.7 0.4 0.7 
2 40.3 3.8 4.4 
3 112.7 2.9 6.7 
4 116.1 5.0 8.0 
5 77.0 2.0 4.6 
6 20.0 1.2 1.6 
7 4.5 0.5 0.6 
8 40.5 1.8 2.8 
9 72.6 3.1 5.0 

10 60.3 1.8 3.7 
11 16.3 1.5 1.7 
12 1.6 0.6 0.6 
13 21.5 1.5 1.9 
14 65.2 3.7 5.1 
15 72.3 3.4 5.2 
16 101.6 3.3 6.4 
17 76.4 2.6 4.9 
18 45.6 2.1 3.2 
19 21.5 1.9 2.2 
20 14.5 1.4 1.6 
21 6.5 2.6 2.6 
22 <2.0 2.0 
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TABLE 2.  FRANCK-CONDON FACTORS AND UNCERTAINTIES 
FOR v1 =6 EXCITED LEVEL IS F1(34) 

-*■ 

v^ 103q 1036q 105Aq 

0 26.6 5.4 6.2 
1 76.6 2.4 8.8 
2 53.5 2.2 6.3 
3 3.4 0.8 0.9 
4 32.1 3.2 4.8 
5 58.3 4.1 7.7 
6 5.5 1.8 1.9 
7 21.2 2.5 3.4 
8 50.8 2.1 6.0 
9 13.1 1.3 2.0 

10 7.3 1.8 2.0 
11 48.8 2.0 5.8 
12 27.1 1.0 3.2 
13 2.0 1.0 1.0 
14 29.0 1.1 3.4 
15 47.1 1.6 5.5 
16 13.0 1.8 2.3 
17 <1.8 1.8 
18 66.8 4.1 8.5 
19 77.5 5.3 10.1 
20 21.3 8.9 9.2 
21 9.7 4.9 5.0 
22 29.4 4.7 5.7 
23 75.5 7.7 11.4 
24 69.2 4.6 9.0 
25 69.9 12.5 14.7 
26 37.7 9.4 10.3 
27 27.4 13.7 14.0 
28 <10.0 10.0 
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TABLE 3.  FRANCK-CONDON FACTORS AND UNCERTAINTIES 
FOR v' = 7 EXCITED LEVEL IS F3 (30) 

v^ 105q                   1036q 103Aq 

0 46.5 1.4 5.4 
1 79.6 7.7 11.7 
2 40.6 1.8 4.9 
3 8.2 2.1 2.3 
4 62.9 4.5 8.3 
5 24.9 4.2 5.0 
6 9.0 2.8 3.0 
7 15.0 0.6 1.8 
8 20.5 2.5 3.4 
9 7.8 2.6 2.7 

10 44.3 2.7 5.6 
11 22.3 1.1 2.7 
12 <1.9 
13 38.1 2.5 4.9 
14 28.6 2.9 4.3 
15 <2.0 
16 28.7 3.0 4.4 
17 38.8 3.3 5.4 
18 22.0 2.8 3.7 
19 <1.9 
20 50.2 5.0 7.5 
21 68.6 4.9 9.1 
22 27.1 5.4 6.2 
23 <2.0 
24 19.8 5.0 5.5 
25 16.6 9.2 11.5 
26 86.0 7.7 12.3 
27 64.2 6.4 9.6 
28 54.6 9.1 10.9 
29 30.1 10.0 10.5 
30 <2.0 

iF3   ^ 

1036q 

1. 4 
7. ,7 
1. 8 
2. 1 
4, 5 
4. 2 
2. 8 
0, .6 
2, ,5 
2, ,6 
2, ,7 
1, ,1 
1, ,9 
2, ,5 
2, ,9 
2, ,0 
3, ,0 
3 ,3 
2. .8 
1 ,9 
5 .0 
4, .9 
5 .4 
2 ,0 
5 .0 
9 .2 
7 .7 
6 .4 
9 .1 

10 .0 
2 .0 
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TABLE 4.  FRANCK-CONDON FACTORS AND UNCERTAINTIES FOR 
v' = 8 EXCITED LEVEL IS N' = 28 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
lb 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
52 

105q 

43.0 
71.9 
4.4 

37.9 
50.7 
<0.6 
43.5 
38.0 
0.9 

44.1 
24.7 
3.2 

45.8 
,7 
,8 
1 
2 

23. 
1, 

39. 
28. 
<0.2 
29.0 
46.7 
8.6 
6.3 

42,4 
45.6 
12.5 
2.3 

31.7 
65.9 
76.9 
74.1 
36.8 
20.0 
<2.0 

1056q 

4, 
2 
0, 
3, 
3, 
0.6 
3.1 
3.1 
0.4 
2.5 
1.3 
0.1 
2.3 
1.4 
0.1 
1.8 
1.0 
0.2 
1.3 
1.7 
0.4 
0.6 
2.1 
2.4 
1.2 

2 
0 
0 
6 
9 
6 

10.0 
2.0 

105Aq 

5.7 
6.3 
0.7 
4.2 
5.1 

4.6 
4.3 
0.4 
4.2 
2.3 
0.3 
4.2 
2.3 
0.2 
3.5 
2.4 

2.6 
4.0 
0.8 
0.8 
3.9 
5.0 
1.5 
1.2 
2.7 
5.9 
9.7 
7.6 
9.1 

10.1 
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TABLE 5.  FRANCK-CONDON FACTORS AND UNCERTAINTIES FOR 
V1 = 9 EXCITED LEVEL IS F1 (36) 

Yl 103q 1035q 105Aq 

0 82.5 11.7 14.6 
1 70.2 3.5 8.2 
2 0.6 0.2 0.2 
3 57.8 2.9 6.7 
4 23.0 1.1 2.7 
5 14.7 0.8 1.7 
6 53.4 2.7 6.2 
7 2.0 0.4 0.5 
8 35.1 1.8 4.1 
9 40.0 2.0 4.7 

10 0.3 0.1 0.1 
11 39.1 2.0 4.6 
12 22.9 1.2 2.7 
13 3.8 0.2 0.4 
14 43.2 2.1 5.0 
15 18.5 1.2 2.3 
16 3.9 0.2 0.5 
17 38.3 1.9 4.4 
18 25.9 1.8 3.3 
19 0.6 0.4 0.4 
20 31.9 3.7 5.0 
21 39.9 2.0 4.6 
22 5.1 0.7 0.9 
23 11.2 1.2 1.7 
24 41.6 3.3 5.5 
25 35.9 2.4 4.5 
26 6.2 1.9 2.0 
27 2.0 1.0 1.0 
28 31.6 5.5 6.4 
29 64.7 5.5 8.7 
30 91.2 10.0 13.8 
31 50.5 6.1 8.1 
32 12.2 6.1 6.2 
33 <6.0 

1035q 

11. 7 
3. 5 
0. 2 
2. 9 
1. 1 
0. 8 
2. 7 
0 4 
1 8 
2. 0 
0. 1 
2 0 
1 2 
0 2 
2 1 
1 2 
0 2 
1 9 
1 8 
0 4 
3 7 
2 0 
0 7 
1 2 
3 3 
2 4 
1 9 
1 0 
5 5 
5 5 

10 0 
6 1 
6 .1 
6 .0 
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in the absolute qv'v" is estimated^ as arising from the calibration. 
This is not included in the numerical values for Aqv'v" given in the 
tables. 

For each excitation, the values of J' for the level excited are 
determined by a measurement of the splitting!! between the main R-P 
doublet (See Figure 4a) for several intense terms in the progression. 
Appendix II contains details concerning the analysis; the result for each 
excitation is listed in the tables of qv'v".  The Franck-Condon factors 
in S2 are observed! to vary somewhat with J'. However, the amount of 
the variation! is such that the reported values of qv'v'S measured here 
for J' in the vicinity of 30, are quantitatively correct* for J' between 
1 and approximately 50. This includes the important band head region, 
and the J' corresponding to the peak of the rotational distribution for 
temperatures of 2000° or less. 

IV.  DISCUSSION 

A. Absolute qv'v" for the B-X System 

Together with the measurements made by Meyer,!J9 these results 
complete the set of Franck-Condon factors for the B-X system of ^^S2- 
All of the values are collected in Table 6, where the entries are given 
(for convenience) in the form lOOOqv'v"- 

B. A Graphical Representation of the qv'v" 

A simple undulatory pattern, like that exhibited in Figure 4b for 
the fluorescence progression emitted by v' = 6, is observed for each v'. 
In particular, the locus of the peaks of the intensities forms a pattern 
always having (v' + 1) lobes. This result is amenable to a simple ex- 
planations and a graphical representation which are described in the 
following. 

Referring to Figure 1, it can be seen that the B-state vibrational 
wavefunctions have significant amplitude only over a range of inter- 
nuclear distance where the ground state potential is attractive.  This 
means that the primary contribution of ijjvn to qv'v" will come from the 
region nearer the right hand turning point, rR(v"), for that v". 

In the left hand part of Figure 5, the v' = 9 and several v" wave- 
functions are drawn. Consider the overlap of v' = 9 with v" = 20. The 
more rapid oscillations in the center of the v" = 20 wavefunction will 

K. A. Meyer and D. R, Cvosley^ "Hanle Effect Lifetime Measurements 
on Selectively Exaited Diatomic Sulfur", J. Chem. Phys,, 59j 1933- 
1941   (1973). 

I.   e. within the quoted error bars, 
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TABLE 6.  FRANCK-CONDON FACTORS FOR THE B-X SYSTEM.  ENTRIES ARE 
1000 x qvV'i EXCEPT FOR THE LAST COLUMN, WHICH IS THE 
FRACTIONAL OVERLAP WITH THE CONTINUUM FOR THE v" LEVEL 

V" 

0 <1 1 1 4 9 15 27 47 43 83 0.77 
1 1 6 12 21 39 48 77 80 72 70 0.57 
2 10 25 40 67 82 80 54 41 4 1 0.60 
3 23 55 113 100 69 39 3 8 38 58 0.49 
4 41 103 116 72 11 14 32 63 51 23 0.47 
5 64 112 77 6 11 43 58 25 <1 15 0.59 
6 105 98 20 17 61 57 6 9 44 53 0.53 
7 136 70 5 67 54 9 21 15 38 2 0.58 
8 152 <3 41 69 5 18 51 21 1 35 0.61 
9 143 23 73 20 16 56 13 8 44 40 0.56 

10 118 45 60 3 62 29 7 44 25 <1 0.61 
11 82 82 16 48 46 <3 49 22 3 39 0.61 
12 58 100 2 76 3 28 27 <2 46 23 0.64 
13 38 93 22 54 15 6 2 38 24 4 0.70 
14 16 80 65 6 56 20 29 29 2 43 0.65 
15 7 65 72 7 54 <4 47 <2 39 19 0.69 
16 2 29 102 38 21 31 13 29 28 4 0.70 
17 <1 20 76 72 1 50 <2 39 <1 38 0.70 
18 <10 46 87 27 41 67 22 29 26 0.66 
19 22 72 74 11 78 <2 47 1 0.70 
20 15 47 87 15 21 50 9 32 0.72 
21 7 32 77 61 10 69 6 40 0.70 
22 <2 11 62 76 29 27 42 5 0.75 
23 3 34 66 76 <2 46 11 0.76 
24 <2 17 60 69 20 13 42 0.78 
25 7 42 70 17 2 36 0.83 
26 <1 15 38 86 32 6 0.82 
27 15 27 64 66 2 0.83 
28 <16 <10 55 77 32 0.84 
29 30 74 65 0.83 
30 <2 37 91 0.87 
31 20 51 0.93 
32 <2 12 0.99 
33 

Ref. 1 1 9 9 1 
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yield alternating positive and negative values when multiplied by the 
more slowly varying i^v' at the same value of r (See Eq. (3)).  Conse- 
quently, the contributions to the overlap integral from the middle region 
of internuclear distance will tend to cancel, and the integral will be 
dominated by contributions from the region near rR(v") where ^v" = 20 
has a more slowly varying amplitude. 

This argument is extended graphically in the right hand portion of 
Figure 5, where the more rapidly oscillating part of the ^v" (which 
give zero or small net overlap) is set to zero, and the lobe near rR(v") 
replaced by a gate attached at the turning point. As the spectrometer 
scans the fluorescent progression, as in Figure 4b, the gate moves to 
higher v" and hence, larger rR(v") in effect scanning across ifv' (See 
Figure 5).  Considering the gate to be represented mathematically as a 
delta function, we have 

qv,v„ = |^v,(r)6(r-rR(v"))dr|
2 = 1^, (rR(v")) | 2 . (4) 

That is, the Franck-Condon factor qv'v" represents the square of the 
probability amplitude for the v1 vibrational level at the value of inter- 
nuclear distance given by rR(v"). 

[Clearly, Eq. (4) represents an approximation needed for the purposes 
of discussion, rather than a quantitative relationship. However, model 
calculations for v' = 4 using Morse wavefunctionsl2 have been carried 
out.  These show that, while one must integrate inward from rR(v") for 
3 or 4 oscillations of i|/v" before the cancellation becomes appreciable, 
qualitatively correct calculated values of q4jv" 

are obtained by termina- 
ting the integral after the first lobe at rR(v").] 

This simple picture can be graphically represented in the following 
fashion. The right hand turning points rR(v") are obtained from RKR 
calculationsl3 on the ground state. The qv'v" from Table 6 are then 
plotted, in stick diagram fashion, as a function of rR(v").  For each 
v', the qv'v" are plotted with zero at the corresponding energy level 
(that is, in the way that wavefunctions are often plotted). 

The results are displayed in Figure 6.  Superimposed on the qv'v" 
pattern is the RKR curve for the B-state.13  it is to be emphasized 

22 G.  D.   Brabson,   "Calaulat-ion of Morse Wave Function with Tvogvcanmab'Le 
Desktop Calculators"j  J.   Chem.  Ed.3   50,   397-399  (1973). 

13 G.  D.  Brabson and R.   L.   Volhnar,   "Calculation of Potential Energy 
Curves for S2 Perturbed by a Frozen Inert Gas Matrix Environment"} 

J.   Chem.  Phys.,   55,   3209-3215  (1973). 
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Figure 6.  A plot of the qv'v" vs- rR(v"); see text.  The zero for each 
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The curve is the B-state RKR potential, independently plotted. 
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that the potential curve plot and the qv'v" plots shown in Figure 6 are 
entirely independent* of one another. 

The assumptions involved in the use of Eq. (4) preclude attaching 
quantitative significance to Figure 6.  Nonetheless, we find the repre- 
sentation exhibited there to be pleasing and instructive.  The "wave- 
functions" possess the proper number of lobes and span the expected 
range of internuclear distance with reasonable centering.  It is tempting 
to point out, additionally, that the undulations in the center (where 
the kinetic energy is higher) have a shorter wavelength than those near 
the turning points, and that the plots show finite though small ampli- 
tude in the classically forbidden region outside the turning points.  In 
any event, these results form a compelling reminder that molecular vibra- 
tion is indeed described by a wavelike picture;14 in fact, the essence 
of this illustration is contained clearly in the raw data, such as that 
displayed in Figure 4b. 

C.  Overlap with tyvi   above the Predissociation Limit 

The Franck-Condon factors, for a given tyv",  obey a sura rule like 
Eq. (2) when suraraed over v'. However, in this case the sum must also 
include those vibrational levels above the predissociation limit in 
B3zu , which sets in just below the rotationless level in v' = 10 (for 
the 32-32 isotope).  One may write 

9 

v'-O 
^  q . „ + f u = i (5) V V     V 

where fy" represents the fraction of the total overlap of ipv" with those 
v' wavefunctions above this limit. The fy" may be easily evaluated by 
summing over the qv'v"; the results are listed in Table 6. 

A clear trend may be discerned in the fy".  (A quantitative attempt 
at uncertainty assessment is unwarranted; small differences between any 
two fy" are likely not significant but the overall variation should be 
meaningful.)  With the exception of v" = 0, the overlap with the ^v' 
above v1 = 9 rises rather smoothly from a value near 50% for low v" to 
a value above 90% for v" in the vicinity of 30, 

it 
The zero of energy must of course be defined. 

To quote the late E.   U.  Condon  ["The Franck-Condon Principle and 
Related Topics",  Amp.r.   J.   Phys.3  15A  365-374  (1947)]:     "The Franck- 
Condon patterns form real and forceful proof ...  of the reality of de 
Broglie wuoes associated with the nuclear motions in the molecules". 
We thank Dr.  E.  N.   Zare for drawing our attention to this delightful 
and instructive article. 
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The value of £v" for v" = 0 is obviously outside the general trend. 
It is important to establish that this is a real difference, and not 
some systematic experimental error or artifact of the calculation pro- 
cedure.  To do so, we offer the following qualitative physical argument 
based on the same kind of approach used to arrive at the plot in Figure 
6. 

Again referring to Figure 1, we this time note that the ijv', for 
low values of v", span a region of internuclear distance situated under 
the left-hand (repulsive) portion of the B-state potential.  The same 
line of reasoning as before can now be used to consider that, for a 
given v", the set of qv'v" represents the values |»|'v"CrLCv,)3 I ^> the 
square of the probability amplitude at the left-hand turning point of 
the B-state potential.  In this case, however, examination of Figure 1 
suggests that the approximation should break down by the time v" ^ 10. 

In Figure 7 is presented a plot akin to that in Figure 6, for 0 < v" 
< 10.  Brabson's calculations^ furnish the rL(v'j, as well as the X- 
state potential curve which is again independently* syperimposed.  The 
abrupt termination of the plots at r^CV = 9) = 1.928A is of course due 
to the fact that the left-hand turning points less than this value belong 
to vibrational levels above the predissociation limit. 

For the lowest values of v", one can discern the essential outlines 
of the right-hand portion of the "wavefunctions" showing reasonably 
spaced lobes of the proper number.  On the other hand, the pattern be- 
comes lost at the higher values of v" plotted in Figure 7, as anticipated 
from the examination of the potentials. 

Considering only a comparison of ijjvn=0 with the v" = 1 through 3 
patterns, it can be seen that the former has a larger fraction of its 
amplitude in the region where r < rL (v1 = 9),  Consequently, it may be 
expected to have a significantly larger overlap with the predissociated 
levels v' > 10.  Even though those v' levels are not bound, they too 
will have more slowly varying lobes near their (single) turning point at 
the repulsive wall. The v" = 0 wavefunction exists in a region probably 
corresponding to that spanned by the rapidly rising B-state potential, 
yielding good overlap with these wavefunctions. 

Herzberg and MundielS have taken absorption spectra of the (v', 0) 
sequence up to v' =22. The intensity in absorption jumps abruptly be- 
tween v' = 9 and 10, corresponding to the onset of the predissociation. 
The relative intensities from v' = 10 through v' = 22 form a smooth 
pattern with a single maximum at v1 = 13, strongly suggestive of the 
continuation, to the left, of the pattern for v" = 0 in Figure 7.  Their 

The zero of energy must of OOUTSQ he defined. 

G.   Herzberg and L.   G.  Mundie,   "On the Predissociation of Several 
Diatomic Moleeules",  J.   Chem.  Phys.,  8,   263-273  (1940). 
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estimated intensities* indicate that 91% of the absorption strength 
out of v" = 0 is to levels having v' > 10, while we have found that the 
overlap with these levels is only 75% of the total. This may indicate 
that the transition moment Re is, on the average, about twice as large 
for the transitions to the predissociated levels as for the transitions 
to the bound ones. However, the likely variation in Re(r), on a state- 
by-state basis at.high v', renders this result useful only as a rough 
guide, and not as a quantitative characterization. 

Taken from the graph; Figure  2, of reference IS. 
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APPENDIX A 

The laser excites the S2 in the center of a T-shaped cell, so that 
the emitted radiation passes through a layer {y  4 cm) of S2 vapor before 
reaching the exit window. At higher pressures, some of the fluorescence 
for low v" bands will be absorbed by this layer.  This absorption 
coefficient for the i^h band is proportional to q^Fip, where Fj is the 
fraction of molecules in the ith ground state vibrational level and p is 
the S2 pressure. Consequently, 

(I./I-) • ,   = (I-/I-)   +   exp [-cp (q.F. - q.F.)] 1 y window    1 y center  r L r ^1 1   J 3 

The correction is made empirically, using measurements of the ratio 
of the intensity of each band of interest to the intensity of a band 
with high enough v" that the level has negligible population.  A plot of 
the logarithm of the ratio vs. p provides a straight line which is used 
to extrapolate the measured intensity to that which would be observed at 
zero pressure. Typical necessary corrections to the strongest bands are 
about 20 percent, with an estimated 20 percent error in the amount of 
correction. This uncertainty is included in the 6qv'v" values where 
appropriate. 
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APPENDIX B 

The analysis for the rotational quantum numbers of the excited level 
depends primarily on the splitting between the main R and P branches of 
the rotationally resolved fluorescence (See Fig. 4a).  To a first approx- 
imation (that is, neglecting the triplet splitting), the separation 
AVRP = 4Bvn (J' + 1/2).  Using this value of J' and knowledge of the 
triplet component involved (see below), an improved value of J' is cal- 
culated taking into account the influence of the triplet splitting (see 
reference 1 of text). 

The occurrence of rotational satellites is expected (see reference 
12 of text) in fluorescence from Fl or F3 levels in v' = 2, 6, and 7. 
The observation of a satellite may then be used to assign the triplet 
component involved, and the separation of the satellite from the nearest 
main branch provides further data on the value of J'.  The results are 
summarized in the table where the columns labeled N' (main) and N' 
(satellite) list the quantum numbers obtained from the analysis of these 
respective splittings.  Since only alternate rotational levels exist in 
the B3iu state, the closest even value is used for the assignment. 

There exists no prior information concerning the expectation of 
satellites (see reference 12 of text) in emission from v' = 8 or 9.  None 
is observed here.  In the case of v' =9, a value of N' = 36 was obtained 
from the R-P splitting.  The excitation was by an R-branch in the (9,0) 
band, measured to be at 35251 cm-!. We compare this with a rotational 
analysis* yielding the values 32250, 35237, and 35241 cm"1 for Ri(36), 
R2(36), and R3(36) respectively, to assign this excitation to the Fi(36) 
level.  Thus, v' = 9 does not have satellites and thus probably has a 
positive value of the triplet splitting parameter (see reference 12 of 
text).  We do note that Fi(36) is the highest bound level* in v' = 9 
before the onset of predissociation. This could affect the presence or 
absence of satellite emission. 

For v' = 8, we have no previous analysis which would yield a choice 
of triplet component. The excitation was R(28) in the (8,0) band, at 
34858 cm-1. 

J.  M,  Rioks and R.  F.  Barrow,   "The Dissociation of Gaseous Diatomic 
Sulfur",   Can J.   Phys.,  47,   2423-2427  (1969). 
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SUMMARY OF RESULTS OF ROTATIONAL ANALYSIS 

Observed 
N1 (main)     Satellite     N' (Satellite)     Assignment 

46.0 T 43.9 F (46) 
31 6 

33.8 N 33.6 F (34) 
13 i 

30.4 T 27.5 F_(30) 
R31 3 

27.9     N!=28 

35.7     F^Se) 
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